
ETMS System Design Document
Version 5.8

10-1

Section 10

Aircraft Situation Display Function

Purpose

The Aircraft Situation Display (ASD) is an application used by the traffic management
specialist to access and display various ETMS data. The ASD displays ETMS data in a variety
of ways including graphical displays superimposed on map overlays; textual reports of flight
and traffic activity; and bar graphs of traffic demand counts. The ASD is interactive and
responds to traffic management specialist requests as entered through use of the keyboard
and mouse (or trackball). At least one ASD runs on each traffic management specialist
workstation.

NOTE: It is recommended that the reader become thoroughly familiar with the operation of the
ASD before reading this section. The operation of the ASD is described in the ASD
Tutorial and the ASD Reference Manual.

Execution Control

The execution of the ASD is initiated from a script. The script may be a manually invoked
shell script, a login script, or more typically, a script invoked by clicking on the Tool
Manager's ASD icon. The setup parameters (see the next Input section), which are read by
the ASD on startup, are used to set up inter-process communications with the appropriate
network site as well as determining the behavior of the ASD.

Input

The ASD gets the following dynamic data from other ETMS processes and displays it to the
traffic management specialist:

• ASD updates — map and rte files received from the Flight Table Manager,
which are used to update the flight position/flight data displays. Files are
received periodically based on an FTM parameter. Typically, files are received
every one minute.

• Flight data replies — responses from the Flight Table Manager to requests for
detailed flight information. Used by the ASD to draw alerted flight paths.

• Alert updates — files containing alerted elements, and the traffic demands at
each alerted element. Used by the ASD to update the alerted element display and
to draw bar charts for alerted elements.

• Flight list, flight count, ARRD, and alert reports — reports that contain flight

ETMS System design Document
Version 5.8

10-2

and traffic data requested by the traffic management specialist. Received on
request from the Listserver.

• SA and FT Reports — weather reports that contain surface observation and
ter-minal forecast data, respectively. Received on request from the Weather
Server.

• Demand Data Replies — traffic demand data received on request from the
Traffic Demands Database or from the Alert Server Process, and used to draw
time bar and bar chart data.

• Capacities — data received on request from the Traffic Demands Database
Processor. Used to respond to traffic management specialist requests.

• GA Estimates — data received on request from the Traffic Demands Database
Processor. Used to respond to traffic management specialist requests.

The ASD reads the following startup files when it is initially invoked:

• setup — startup configuration parameters such as primary and secondary site
designations and whether to keep an error log.

• adapt_default — user-adapted ASD commands that are automatically executed
upon startup.

• colors_default — user-adapted colors for drawing the ASD overlays.

• audible_alarm — definitions of alerted elements colors, duration of an
individual beep tone, number of beeps per cycle in one second, number of
ringing cycles, and a list of alerted element names.

• remarks_keywords – user-adapted search criteria for use when searching for
flights that fall under particular keywords.

The ASD reads the following optional arguments from the command line that initiates
program execution:

a — specify the name of the adaptation script file.

b — start the ASD without a standard window frame but with a white border
drawn around the window's circumference.

d — activate the debug mode and do not create a full screen window for use
with the debugger.

e — use exhibit mode for Smithsonian exhibit.

i — use international mode to project the geographical data when displaying
map or aircraft.

ETMS System Design Document
Version 5.8

10-3

k — specify the keyboard test repeat count.

l — use large font display.

m — simulate a monochrome node on the color one.

n — indicate no reply time out for each request made.

s — operate in stand—alone mode with no connection to the network
addressing message switching system.

t — set flight update time out in minutes.

w — set the wait time between keyboard tests in one second.

x — use experimental mode for testing new map databases.

% — specify QA mode for testing the canned alert data file.

The ASD reads data from the following static data files:

• map.gpr.5 — names and locations/boundaries of all airports, NAVAIDs, jet
airways, Victor airways, ARTCCs, sectors, arrival fixes, departure fixes, and
SUA's. Used to draw map overlays and alerts.

• airway.db.5, airway.index.5 — detailed data for jet and Victor airways and the
indexes for searching for specific airways. Used to display a single airway
requested by a traffic management specialist.

• runway.db.5, runway1.index.5, runway2.index.5 — runway locations for all
airports and the indexes for searching for a specific airports runway layout.

• fix.font — font used to label arrival and departure fixes.

• sua.font — font used to label all types of Special Use Areas (SUAs).

• time_bar.font — font used to label the monitor/alert time bar.

• artcc.font — font used to label the ARTCCs.

• sector.font — font used to label all types of sectors.

• route.font — font used to label jet and Victor airways.

• airport.font — font used to label airports when all airports are displayed.

• pacing_airport.font — font used to label airports for the pacing airport
display.

• navaid.font — font used to label NAVAIDs.

ETMS System design Document
Version 5.8

10-4

• data_block.font —font used for flight data blocks.

• airplane.font — symbols for drawing airplanes.

• report.font — font used to display reports.

• bold.font — bold character font used for menu entries and prompts.

• font24 —font 24 pixels wide.

ETMS System Design Document
Version 5.8

10-5

• weather_symbols.24 — weather symbols used for small windows.

• weather_symbols.36 — weather symbols used for large windows.

• etms_icons.1 —set of window icons tailored for each ETMS function.

The ASD optionally reads data from the following types of files in response to user
commands:

• Colors files — color setting for each overlay adapted by using the adjust
colors command and stored with the save colors command.

• Script files — ASD scripts created by the user.

• Weather files — hand-drawn weather patterns saved by the write weather
command.

• WX_maps files — weather products from the weather server.

Output

The ASD sends the following dynamic data in the form of messages to other ETMS
processes:

• Flight data requests — requests for detailed flight information from the Flight
Table Manager. Used by the ASD to draw alerted flight paths.

• Flight list, flight count, ARRD, and alert report requests — requests for reports
as entered by the traffic management specialist.

• SA and FT report requests — requests for weather reports that contain surface
observation and terminal forecast data, respectively, from the Weather Server.

• Demand Data Requests — requests for traffic demand data from the Traffic
Demands Database process and Alert Server Process are used to request time
bar data, bar chart data, and alerted flight data.

• Capacity queries — requests for capacity data from the Traffic Demands
Database Processor. Used to respond to traffic management specialist requests.

• Capacity updates — capacity data entered by the traffic management specialist
to update the traffic demands database.

• General Aviation (GA) estimate queries — requests for GA estimate data from
the Traffic Demands Database Processor. Used to respond to traffic
management specialist requests.

• General Aviation (GA) estimate updates — GA estimate data entered by the
traffic management specialist to update the traffic demands database.

ETMS System design Document
Version 5.8

10-6

• Schedule database updates — updates to the schedule database entered by the
traffic management specialist; consist of FPSD, CXSD, INHB, and ACTV
commands.

ETMS System Design Document
Version 5.8

10-7

The ASD optionally writes data to the following files in response to user commands:

• Colors file — color setting for each overlay adapted by using the adjust colors
command and stored with the save colors command.

• Weather file — hand-drawn weather patterns stored with the write weather
command.

The ASD optionally writes the trace data to the following file (if the setup file log errors
directive):

• Trace file — timing data and a log of ASD commands, error messages, and
execution traceback.

Design Issue: Graphics Support Software

The ASD uses the HP/Apollo Graphics Primitives (GPR) package to do all graphics, keyboard
input, and mouse input. The GPR package is the lowest—level graphics support software
provided by HP/Apollo. GPR was chosen, because it allows for customizing the use of the
graphics hardware for optimal performance. GPR is fully integrated with the Apollo operating
system and display manager software.

GPR is used in direct mode, i.e., the program operates within a display manager window; it
does not borrow the display. The main reasons for using direct mode is to be able to use the
HP/Apollo debugger to debug the program and to allow other Apollo shells/applications to
co—exist with the ASD.

The processing of the ASD is heavily dependent on the GPR routines. The reader should refer
to the HP/Apollo GPR documentation as needed.

Design Issue: Constructing Addresses

The ASD communicates with other processes via the network addressing message switching
system. At startup, the ASD connects to the node switch, and constructs the addresses of the
processes with which it needs to communicate by combining site names, class names, and
wildcards for node, invocation number, and subaddress.

The ASD constructs and stores wildcard addresses rather than requesting explicit addresses
from the message switching system. Constructing the addresses eliminates the need for
request/reply between the ASD and the network addressing system that would be necessary
to acquire explicit addresses. This reduces ASD startup time.

Also, wildcarding the addresses allow the ASD to be less sensitive to other processes being
restarted. A message addressed with wildcards will successfully make it to its destination

ETMS System design Document
Version 5.8

10-8

regardless of the node on which the destination process is running or the invocation number
of the process.

ETMS System Design Document
Version 5.8

10-9

Design Issue: Site Coordination

In order to support data consistency and system integrity, a field site's processes should
receive data from a single hubsite processing string. Coordination of data sources among field
site processes is controlled by the source site of flight data for the field site's FTM.

The FTM supplies the ASD with the current source site as part of each map file update. The
ASD uses this information to select which set of constructed addresses to consider current.
The ASD uses the current set of addresses when making requests for data.

For list requests, the ASD supplies the Listserver with an integer value in the subaddress field
of the Listserver address. This integer represents the site to which the Listserver should direct
the request. The ASD and Listserver share a configuration file (asd_list_site_data) to map
integer values to site names. In this manner, the FTM, ASD, and Listserver all receive data
from the same hubsite processing string.

Processing Overview

Logically, the processing performed by the ASD can be grouped into three main modules:
Initialize, Process Input, and Draw Displays. Data flow for these items is shown in Figure
10-1.

The Initialize module sets up many display parameters, such as display type, window size,
display time-out, and font styles (using the various fonts files). The Initialize module displays
a title page to the user and draws the initial ASD display.

The Initialize module also responds to the following conditions:

• If the setup file exists, it reads in the startup configuration parameters.

• If an adapt_default file exists, it reads this file and performs the adaptation
commands.

• If a colors_default file exists, it reads this file and sets up the display color
map for each overlay.

• If an audible_alarm file exists, it reads this file and sets up the audible alarm
for use in monitoring the alerted elements.

The Initialize module checks for the existence of the data files required for later processing.
The Initialize module also establishes a connection to the node switch to support
communication with other ETMS Functions.

The Process Input module is the driver for the operation of the ASD. This module repeatedly
checks for keystrokes, mouse button clicks, and cursor movements. When a user command
is entered, the Process Input module responds to the command. If the command requires data
from an external source, it sends a data request.

The Process Input module also does the following:

ETMS System design Document
Version 5.8

10-10

• For some requests, waits for the reply before continuing. For other requests,
continues with other processing after the request is issued.

• Checks repeatedly for asynchronous network messages sent from other ETMS
functions. When a network message is received, initiates the display of the
received data.

• Reads and write colors and defaults files in response to user commands.

• Reads script and weather files to respond to user commands.

• Uses location names from the map.gpr.5 file to help interpret and verify the
geographical names or airways as specified in the user commands.

The Draw Displays module consists of a set of routines which execute the various data
displays. The Draw Display routines are invoked by the Initialize and Process Input modules
as needed to perform their functions. The Draw Display routines use data from the
map.gpr.5, runways, and airways files to generate overlay graphic displays.

The Initialize, Process Input, and Draw Displays modules communicate with each other
through a vast array of global variables. Global variables were used, because many routines
are dependent on common parameters, and because the execution thread of the ASD program
can be extremely varied.

For example, a set of global flags, displayed, are used to indicate which of the overlays are
currently displayed. When the user toggles an overlay of the displayed map data through a
keyboard command (e.g., weather patterns or flights), the Process Input module toggles the
corresponding flag in displayed. When the display is re-drawn, the Draw Displays routines
draw or erase the corresponding overlay data display.

ETMS System Design Document
Version 5.8

10-11

Draw
Displays

10.3

Process
Input
10.2

Initialize
10.1

AdaptationSetup

Fonts Colors

Audible
Alarms

w x_map

Airways

Runways

Help

map.grp .5

Weather
Patterns

Adaptation

Audible
Alarms

ScriptsDefaults

Colors

Id_scripts

Command L ine
Arguments

Disp lay Parameters ,
D isp lay Data

Network Address ing
Parameters

Disp lay Parameters ,
D isp lay Data

ASD Updates ,
Fl ight Data,
A ler t Updates ,
Reports,
Demand Da ta ,
Capaci t ies,
GA Est imates

Fl ight Data Req. ,
Report Reg. ,
Demand Data Req. ,
Capac i ty Req. ,
GA Es t imate Req. ,
GA Est imates
Schedu le Upda tes

Figure 10-1. Data Flow of the Aircraft Situation Display

For simplicity, the ASD is assumed to be running with full network support. The
defaults file folder is used generically for any defaults data files.

ETMS System design Document
Version 5.8

10-12

10.1 The Initialize Module

This module performs the initialization for the ASD function.

Input

The Initialize module uses the following data received dynamically from the Flight Table
Manager:

• ASD updates — map and rte files received from the Flight Table Manager
used to draw the initial flight position/flight data display. The Flight Table
Manager sends the latest map and rte files when an ASD first registers.

The Initialize module reads the following startup files when it is initially invoked:

• setup — startup configuration parameters such as primary and secondary site
designations and whether to keep the error log.

• adapt_default — user-adapted ASD commands that are executed upon
startup.

• colors_default — user-adapted colors for drawing the ASD overlays.

• audible_alarm — definitions of alerted elements colors, duration of an
individual beep tone, number of beeps per cycle in one second, number of
ringing cycles, and a list of alerted element names.

The Initialize module reads the following optional arguments from the command line which
initiates the program execution:

a — specify the name of the adaptation script file.

b — start the ASD without a standard window frame but with a white border
drawn around the window's circumference.

d — activate the debug mode and do not create a full screen window for use
with the debugger.

e — use exhibit mode for Smithsonian exhibit.

i — use international mode to project the geographical data when displaying
map or aircraft.

k — specify the keyboard test repeat count.

l — use large font display.

m — simulate a monochrome node on the color one.

ETMS System Design Document
Version 5.8

10-13

n — indicate no reply time out for each request made.

s — operate in stand-alone mode with no connection to the network addressing
message switching system.

t — set flight update time out in minutes.

w — set the wait time between keyboard tests in one second.

x — use experimental mode for testing new map databases.

% — specify QA mode for testing the canned alert data file.

The Initialize module reads data from the following static data files:

• map.gpr.5 — contains names and locations/boundaries of all airports,
NAVAIDs, jet airways, Victor airways, ARTCCs, sectors, arrival fixes,
departure fixes, and SUA's. Used to draw map overlays and alerts.

• fix.font — font used to label arrival and departure fixes.

• sua.font — font used to label all types of SUA.

• time_bar.font — font used to label the monitor/alert time bar.

• artcc.font — font used to label the ARTCCs.

• sector.font — font used to label all types of sectors.

• route.font — font used to label jet and Victor airways.

• airport.font — font used to label airports when all airports are displayed.

• pacing_airport.font — font used to label airports for the pacing airport
display.

• navaid.font — font used to label NAVAIDs.

• data_block.font — font used for flight data blocks.

• airplane.font — symbols for drawing airplanes.

• report.font — font used to display reports.

• bold.font — bold character font used for menu entries and prompts.

• font24 — font 24 pixels wide.

• weather_symbols.24 — weather symbols used for small windows.

ETMS System design Document
Version 5.8

10-14

• weather_symbols.36 — weather symbols used for large windows.

• etms_icons.1 — set of window icons tailored for each ETMS function.

Output

The Initialize module outputs the following data through global variables:

• Display parameters — many variables including display type (color/bw),
number of display color planes, display color set, current window size,
maximum window size, font index array, color array, fill patterns, menu box
sizes, cursor position, data displayed flags, map center, translation offsets,
zoom scale, audible alarm settings, error log flag, and special mode flags (for
experimental mode, large screen mode, etc.).

• Display data — static and dynamic data passed to the Draw Display routines as
needed to draw the initial display overlays (depends on the adaptation file
contents). By default, consists of an ASD update.

• Window icon — window icon character changed to the one tailored for the
ASD function.

Processing

The Initialization module processing consists of a long series of steps which are executed
sequentially from the main program module. Processing is performed by invoking separate
routines, which appear in parentheses in the description that follows.

The Initialization module proceeds in the following sequence:

(1) Read the command line arguments and set a corresponding flag for each argument
that exists. For instance, if a flight time out argument exists, set
flight_update_timeout to the specified value. (check_args)

(2) Read the startup parameters from the setup file. (read_setup_file)

(3) Set flight_update_timeout to 7 minutes as a default if no command line
argument —t specified.

(4) Create /reports, /rawlist, /etms5/asd/adapt, /etms5/asd/adapt/weather, and
/etms5/asd/adapt/scripts directories if they do not exist.

(5) Set GPR mode to direct.

(6) Set display parameters depending on special modes, display type, and current
window size: x and y bit ranges, maximum window size, small window size,
number of display color planes, and color flag. Bring window to front of display if
obscured.

ETMS System Design Document
Version 5.8

10-15

(7) Read font files and load the fonts into GPR. If large_screen is set, read the font
files in the large_fonts directory; otherwise, read the files in the fonts directory
Create the font_id array of GPR font names indexed by the display element types
(arrival_fixes, sectors, etc.). (set_up_fonts)

(8) Set font_id array values that are not defined explicitly in the fonts files by making
them equivalent to values that are.

ETMS System design Document
Version 5.8

10-16

(9) Set menu box sizing parameters appropriate for the bold_fonts character size.
(adjust_panel_size)

(10) Set the window parameters based on the current window size. (measure_window)

(11) Display the ASD title page. (display_title)

(12) Allocate two GPR bitmaps, and fill with the background colors.

(13) Create and initialize the cursor position and attributes.

(14) Create striped fill patterns, which are used later to draw sector alerts. (stripes)

(15) Load the map overlay data from the map.gpr file.(mapl)

(16) Initialize the zoom scale, map center point, and displayed flags to hard—coded
default values. Compute the translation offsets. Read the audible_alarm file to
initialize the alarm settings if it exists. (initialize)

(17) Read the colors_default file to initialize the color arrays color_table if the color
file exists; otherwise, set the color array to the default values. Each entry in the
array specifies the color for the corresponding overlay. Separate color variables
exist for controlling the menus, prompts, time bars, and bar charts. If
color_display is true, the colors are set to a hard—coded set (setup_color_node);
otherwise, all foregrounds are set to black and all backgrounds are set to white
(setup_bw_node).

(18) Check for the existence of the airway and runway static data files.
(check_for_files)

(19) Connect to the nodeswitch process. Register with the FTM for periodic map and
rte updates. (asd_init_nwa)

(20) Execute the adapt_default file if exists. (adapt)

(21) Draw the display background and map overlays. (view)

(22) If the flights flag is not set in displayed, ask for the correct time from the FTM
process. (flight_check)

Error Conditions and Handling

Errors incurred during the Initialize module can be fatal or non-fatal. Non-fatal errors cause
an error message to be displayed, but the ASD continues to execute. Fatal errors cause the
ASD to terminate execution.

The following non-fatal error may occur during the Initialize processing:

• Cannot find or open an airway or runway data file (check_one_file).

ETMS System Design Document
Version 5.8

10-17

The following fatal errors may occur during the Initialize processing:

• Cannot open or read setup file (read_setup_file).

• Cannot load a GPR font (load_font).

• Cannot load map overlays into GPR (mapl).

• Incompatible version of the map.gpr file (mapl).

Before the ASD terminates its execution, it cleans up by executing the following steps (in
cleanup_handler procedure):

(1) Close all open report windows (close_all_windows).

(2) Terminate GPR. (gpr_$terminate)

(3) Disconnect from the FTM. (asd_register_for_services)

(4) Disconnect from the ASP. (asd_register_for_services)

(5) Delete all pad.?* files in the trace directory. (dlf)

(6) Restore the window pad to normal. (pad_$cooked)

(7) Reset the current working directory. (name_$set_wdir)

(8) Exit the ASD. (pgm_$exit)

ETMS System design Document
Version 5.8

10-18

10.2 The Process Input Module

The Process Input module is the main driver for the ASD function. This module accepts user
commands entered through the keyboard/mouse and data input from other ETMS functions
via network messages, then takes the appropriate action. The Process Input module invokes
routines from Draw Displays to generate outputs on the screen.

Input

The Process Input module gets the following dynamic data from other ETMS functions for
display to the traffic management specialist:

• ASD updates — map and rte files received from the Flight Table Manager,
which are used to update the flight position/flight data displays.

• Flight data replies — responses from the Flight Table Manager to requests for
detailed flight information. Used to draw alerted flight paths.

• Alert updates — files containing the alerted elements, and the traffic demands
at each alerted element. Used to update the alerted element display and to draw
bar charts for alerted elements.

• Flight list, flight count, ARRD, and alert reports — reports that contain flight
and traffic data requested by the traffic management specialist. Received on
request from the Request Server.

• SA and FT reports — weather reports that contain surface observation and
terminal forecast data, respectively. Received on request from the Weather
Server.

• Demand Data replies — traffic demand data received on request from the
Traffic Demands Database or from the Alert Server Process is used to draw
time bar and bar chart data.

• Capacities — data received on request from the Traffic Demands Database
Processor. Used to respond to traffic management specialist requests.

• GA estimates — data received on request from the Traffic Demands Database
Processor. Used to respond to traffic management specialist requests.

The Process Input module reads data from the following static data files:

• map.gpr.5 — names and locations/boundaries of all airports, NAVAIDs, jet
airways, Victor airways, ARTCCs, sectors, arrival fixes, departure fixes, and
SUA's. Used to interpret and verify user inputs.

• airway.db.5, airway.index.5 — detailed data for jet and Victor airways and the
indexes for searching for specific airways. Used to look up a single airway

ETMS System Design Document
Version 5.8

10-19

requested by a traffic management specialist.

• runway.db.5, runway1.index.5, runway2.index.5 — runway locations for all
airports and the indexes for searching for a specific airports runway layout.

The Process Input module optionally reads data from the following types of files in response
to user commands:

• adapt_default — user-adapted ASD commands that are automatically executed
upon startup.

• Colors files — color setting for each overlay adapted by using the adjust
colors command and stored with the save colors command.

• Script Files — ASD scripts created by the user.

• Weather files — hand-drawn weather patterns saved by the write weather
command.

• WX_maps files — weather products from the weather server.

The Process Input module gets the following data from the Initialize module through global
variables:

• Display parameters — many variables including display type (color/bw),
number of display color planes, display color set, current window size,
maximum window size, font index array, color array, fill patterns, menu box
sizes, cursor position, data displayed flags, map center, translation offsets,
zoom scale, audible alarm settings, error log flag, and special mode flags (for
experimental mode, large screen mode, etc.).

Output

The Process Input module sends the following dynamic data to other ETMS functions:

• Flight data requests — requests for detailed flight information from the Flight
Table Manager. Used to draw alerted flight paths.

• Flight list, flight count, ARRD, and alert report requests — requests for reports
as entered by the traffic management specialist.

• SA and FT report requests — requests for weather reports containing surface
observation and terminal forecast data, respectively, from the Weather Server.

• Demand Data requests — requests for traffic demand data from the Traffic
Demands Database Processor. Used to draw time bar data.

• Capacity requests — requests for capacity data from the Traffic Demands
Database Processor. Used to respond to traffic management specialist requests.

ETMS System design Document
Version 5.8

10-20

• Capacities — capacity data entered by the traffic management specialist to
update the traffic demands database.

• GA estimate requests — requests for GA estimate data from the Traffic
Demands Database Processor. Used to respond to traffic management
specialist requests.

• GA estimates — GA estimate data entered by the traffic management specialist
to update the traffic demands database.

• Schedule database updates — updates to the schedule database entered by the
traffic management specialist; consist of FPSD, CXSD, INHB, and ACTV
commands.

The Process Input module optionally writes data to the following files in response to user
commands:

• Colors files — color setting for each overlay adapted by using the adjust
colors command and stored with the save colors command.

• Weather files — hand-drawn weather patterns saved by the write weather
command.

The Process Input module sends the following data to the Draw Display routines:

• Display parameters — many variables including display type (color/bw),
number of display color planes, display color set, current window size,
maximum window size, font index array, color array, fill patterns, menu box
sizes, cursor position, data displayed flags, map center, translation offsets,
zoom scale, audible alarm settings, error log flag, and special mode flags (for
experimental mode, large screen mode, etc.).

• Display data — dynamic data needed to draw the many displays that can be
requested by the user. Includes ASD updates (active flight data), flight list and
count reports, ARRD reports, weather reports, alerts, bar charts, alert reports,
and alerted flight displays.

ETMS System Design Document
Version 5.8

10-21

check_timeouts

flight_check

Process
queued msgs

10.2.2

Get present
time

End

Begin

refresh_asd_view

window_refresh_handler

refresh_asd_view

Respond To
User requests 10.2.1

Stand-alone?

Quit?

Ring
alarm?

Resized?

Re-draw?

ring_the_phone

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Figure 10-2. Main Logic for the Process Input Module

ETMS System design Document
Version 5.8

10-22

Processing

The main logic of the Process Input module is shown in Figure 10-2. The Process Input
module starts looping after the Initialize module has completed the initialization processing
and continues looping until either a fatal error occurs (not shown) or the user enters a quit
command.

On each pass of the Process Input module, the Process Queued Messages module performs
the following sequence.

(1) If the ASD is not started up as a stand—alone process, the module checks for
incoming network messages from other ETMS functions.

(2) If the received message is a status reply of the previous user request, it calls the
Draw Displays module (Section 10.3) to display the status message.

(3) If the received message is a map update from the FTM process and flights is set
in the displayed variable, it calls the Draw Displays module to redraw the ASD
window to show new traffic data.

(4) If the received message is from the ASP process, it calls the Draw Displays
module to redraw the alerted elements, time bar, and bar chart (if displayed).

On each pass of the Process Input module, the Respond To User Requests module performs
the following functions:

• Checks for any user input. The user enters requests in three ways: typing
single keystrokes, entering semicolon commands, or using menus. If any input
is present, the Respond To User Requests module obtains whatever information
it needs from the user and invokes a routine to execute the request.

• Detects if the ASD window needs to be refreshed. If TRUE, calls the re-
fresh_asd_view routine to refresh the window. If the ASD window was
resized, invokes the window_refresh_handler routine to enable refresh condition
and then invokes the refresh_asd_view to update the screen. The
refresh_asd_view routine is part of the Draw Displays module.

• Examines the current time to see if the alerts alarm should go off. If so, the
ring_the_phone routine is called to flash the alerted elements and ring the alarm.

• Gets the correct time from the FTM process and checks if any of the user
requests have expired without a reply. Whenever a data request is made of any
external function, the requesting routine sets a bit in the global variable
wait_flags and puts a wait time into the global array wait_times. If any
wait_flags are set, the check_time outs routine checks the corresponding value
in wait_times against the current time.

ETMS System Design Document
Version 5.8

10-23

On each pass of the Process Input module, check_timeouts is invoked to perform the time out
checks. If a user request has expired before the Process Input module receives any response,
the corresponding error message will be displayed. Then, the request is removed from the
waiting queue and a flag is reset to indicate that the request is no longer outstanding.

ETMS System design Document
Version 5.8

10-24

10.2.1 The Respond To User Requests Module

The Respond To User Requests module accepts three general classes of input from the user:
keyboard commands, semicolon commands, and menu commands. Keyboard commands are
single keystrokes. Semicolon commands are strings of text consisting of a semicolon
followed by the command name and a variable number of fields. Menu commands are entered
interactively using the mouse buttons. When the middle or right mouse button is depressed, a
menu is displayed. The user moves up and down the menu entries by moving the mouse. The
user can move to sub—menus by sliding the cursor off to the right. A menu selection is made
by releasing the mouse button when the cursor is in the desired entry. The logic for
processing a user request is shown in Figure 10-3.

The HP/Apollo Display Manager allows a user to type ahead when the node is busy.
Therefore, when the Respond To User Requests module asks for input (through a GPR
routine call), it may get one request or several requests. The Respond To User Requests
module processes all requests before returning to the Process Input module.

The Respond To User Requests module first checks whether a mouse button has been
pressed. There are four different conditions under which a mouse button may be interpreted:

(1) If the user is drawing an experimental route (indicated by the status of the draw-
ing_experimental_route flag), pressing a mouse button causes either
seek_navaid, display_lat_lon, or close_route to be invoked.

(2) If the user has placed the cursor in a time bar interval, a time range selection
message is displayed and Process Input module then waits for the second click on
the time bar to end the time range selection.

(3) If the user has placed the cursor in a report name icon, pressing a mouse button
causes either create_window (to display the report), print_report, or
delete_selected_icon to be invoked.

(4) If none of these three conditions applies, the Process Input module checks
whether (a) the mouse input was a single click or (b) a click/drag combination.

In case (a), the data block of the nearest flight is displayed if the left mouse
button was clicked. If the middle mouse button was clicked, the Do Menu
module (Section 10.2.1.1) is called to display the main menu. If the right
mouse button was clicked, the Do Menu module is called to display another
menu for the selected object (e.g. data block or flight icon).

In case (b) (click/drag combination), the data block of the nearest flight is
displayed or repositioned if there is at least a flight icon displayed.

ETMS System Design Document
Version 5.8

10-25

E x e c u t e
R e q u e s t

1 0 . 2 . 1 . 1 . 2

E x e c u t e
R e q u e s t

1 0 . 2 . 1 . 1 . 2

s e e k _ n a v a i d

d i s p l a y _ l a t _ l o n

c l o s e _x r o u t e

D o s e m i c o l o n
C o m m a n d
1 0 . 2 . 1 . 1 . 1

B e g i n

E n d

Y e s

N o N o

Y e s

N o

Y e s Y e s

N o

L e f t

M i d d l e

R i g h t

F i g .
1 0 -3 a

M o u s e
b u t t o n

?

d r a w i n g _
e x p e r i m e n t a l _

r o u t e ?

W h i c h
b u t t o n

?

G o t
k e y s t r o k e

?

I s i t a
s e m i c o l o n

?

Figure 10-3. Logic for the Respond to User Requests Module

ETMS System design Document
Version 5.8

10-26

Do Menu (move/zoom)

Do Menu (main)
10.2.1.1

delete_selected_icon

create_window

gs_select_time_intervals

Do Menu (main)
10.2.1.1

Return

Enter

Which
button

?

Cursor in
time
bar?

Select
time

interval
?

Icon
selected

?

Icon
selected

?

Fig.
10-3b

Double
click

?

Left Yes

m1_test routine No

Yes

No

Yes

No

Yes

No

Middle

Right Yes

No

m3_test routine

Figure 10-3a. Logic for the Respond to User Requests Module (continued)

ETMS System Design Document
Version 5.8

10-27

Enter

Return

Cursor left
window

?

Window
unobscured

?

Refresh
needed

?

Middle
button up

?

Any GPR
event

?

Ever 200
loop count

?

Button or
keyboard

input?

asd_check_nwa_and_enqueue

pad_$pop_push_window

refresh_asd_view

time_$wait

Yes

Yes

Yes

Yes

Yes

Yes

YesNo

No

No

No

No

No

No

Figure 10-3b. Logic for the Respond to User Requests Module (continued)

ETMS System design Document
Version 5.8

10-28

If a mouse button has not been pressed, the Respond To User Requests module checks for a
keystroke. If the semicolon has been pressed, the Do Semicolon Command module is
invoked. If not, the keystroke is a keyboard command; the Respond To User Requests module
invokes a routine from the Execute Request module depending on the key that was pressed.

Regardless of the method used for entering the command, the Respond To User Requests
module eventually invokes a routine from the Execute Request module to take the appropriate
action. The routine is invoked directly if the entry is a keyboard command; otherwise it is
invoked from the Do Semicolon Command module or from the Do Menu module.

If arguments are needed to perform the request, the Execute Request routine prompts the user
for the data. When the request requires a potentially lengthy response time from another
ETMS function, the Execute Request routine initiates the request and allows the ASD
processing to continue.

Later, the Process Queued Messages module completes the request when the data reply is
received. The following sections describe the Do Menu module (Section 10.2.1.1), the Do
Semicolon Command module (Section 10.2.1.1.1), and the Execute Request module (Section
10.2.1.1.2). The Process Queued Messages module is described in Section 10.2.2.

10.2.1.1 The Do Menu Module

The Do Menu module consists of two types of routines: generic menu handling utilities and
routines which draw the specific menus. Each menu that appears on the display has
corresponding routines to handle menu entries and to take the appropriate action for the user
input.

When a user slides off one menu to another menu, the first menu routine invokes another
menu routine. Each menu routine uses a constant level, which defines where the menu
belongs in the menu hierarchy. The menu routines invoke the menu utilities for such functions
as drawing the menus and checking the cursor position.

The menu routines and utilities communicate through several global arrays, which determine
the menu status as follows:

• cross_hatch indicates whether any of the menu boxes should be drawn with
cross-hatches.

• selection indicates which entry is currently selected

selection can also be set to the values advanced (meaning the cursor has been
moved off to the right), retreat (indicating that the cursor has been moved
back to the left), and give_up (indicating that the cursor has been moved
completely off the menus).

• previous_selection saves the entry that was selected when the cursor was

ETMS System Design Document
Version 5.8

10-29

moved off a menu.

ETMS System design Document
Version 5.8

10-30

A menu routine executes in the following sequence:

(1) determines whether any of its menu entries are active (e.g., are the high sectors
turned on?) by examining global flags and if so, adds that entry to the
cross_hatch set.

(2) calls pop_menu to draw the menu at the current cursor position.

(3) enters a loop that continually checks the cursor position and mouse button activity
until a valid selection is made.

The user retreats to the next higher level, or the user gives up. If a valid selection is made, the
appropriate routine from the Execute Request module is invoked, the menus are erased, and
the routine exits. If the user retreats to a higher level, the lowest level menu is erased, and the
menu routine returns. If the user gives up, all the menus are erased, and the routine returns.

Multi-level menus are handled recursively. When the user advances to a lower-level menu, the
menu routine for the lower-level menu is invoked within the loop of the higher-level menu.
The lower level menu must then be resolved in the same manner by selecting, retreating, or
giving up.

When the lower-level menu returns, the higher-level menu may still be active or may be
resolved by the action taken at the lower level. The menu routines can theoretically operate to
any number of levels; however, the current deepest level is four menus.

The logic of a generic menu routine is shown in Figure 10-4.

ETMS System Design Document
Version 5.8

10-31

Enter

Call Next Menu

Set selections
in cross_hatch

Draw Menu

Check Cursor

Execute Request
10.2.1.1.2

Erase menusReturn

remove_last_
menu

Erase Menus

Yes

Yes

N o

Yes

N o
N o

Yes

Yes

N o

Yes

Any selections
active?

N o

Button
released

?

N o Executable
selection

?

N o

Yes

selection =
advanced

?

Advance
legal

?

selection =
retreat

?

level > 1
?

selection =
give_up

?

N o

Yes

Figure 10-4. Logic for a Generic Menu Routine

ETMS System design Document
Version 5.8

10-32

10.2.1.1.1 The Do Semicolon Command Module

The Do Semicolon Command module is performed partly by the command routine and partly
by the routines in Execute Request. The command routine is invoked when the user hits the
semicolon key. The command routine executes in the following sequence:

(1) prompts the user for the command entry by displaying a text-entry box on the
display and reads the user's reply.

(2) extracts the first word from the reply and checks it against the list of legal
commands; if not found, displays an error message temporarily and the exits the
routine.

(3) If the command is legal, invokes the Execute Request routine for the associated
command.

(4) If parameters are needed to execute the command, checks for them in the already
entered text string, and if not present, prompts the user for them.

(5) When the parameters are known, performs the request, as described in the Execute
Request module (Section 10.2.1.1.2).

The logic of the Do Semicolon Command module is shown in Figure 10-5.

10.2.1.1.2 The Execute Request Module

The Execute Request module consists of a large number of routines which performs the
various functions that the user may invoke through keyboard commands, menu selections,
and semicolon commands. The Execute Request routines are summarized in the following
lists. The lists are organized according to the general category of routine.

The following routines perform functions related to displaying maps:

• copy_bitmap routine — makes it possible to print a copy of the display
currently drawn on the screen.

• display_lat_lon routine — displays the latitude and longitude corresponding to
the point on the display where the cursor is currently located. It is called in
response to a keyboard period (.) command, either while drawing an
experimental flight path or not, or by a middle mouse button while drawing an
experimental flight path, or by the menu latitude/longitude command.

• initialize routine — initializes the display, ignoring the adaptation file, if any.

• move_center routine — changes the translation offset so that the display is
centered over a different geographic point. It notes that the magnification has
not changed so that other program code will not change the magnification. In

ETMS System Design Document
Version 5.8

10-33

order to let the user type several move and/or zoom commands in quick
succession and have the computer just redraw the screen once, the
test_keyboard type-ahead feature has been added.

ETMS System design Document
Version 5.8

10-34

End

Begin

Execute
Request

Prompt for
parameters

Display error
message

Get first
word

Read reply

Prompt for
command

Already
in reply

?

Need any
parameters

?

Legal
command

?

No Yes

No

No

Yes

Yes

Figure 10-5. Logic for the Do Semicolon Command Module

ETMS System Design Document
Version 5.8

10-35

• pop routine — changes the window so it takes up the whole screen. If it
already takes up the whole screen, it returns the window to its original size.

• specify_range_rings routine — gets the specifications for the range rings.

• super_move routine — moves the center of the display to a specified place. The
place name can be an airport, NAVAID, sector, or a place with a name as long
as moa Fort Bragg east. This is the semicolon class version of the move
command.

• super_zoom routine — moves the center of the display to a specified place with
a specified magnification. This is the semicolon class version of the zoom
command.

• toggle routine — turns an overlay on if it is off, or off if it is on. In either case,
it puts the map overlay (e.g., a map of high sectors , or an overlay of pacing
airport identifiers) into the set of overlays that are always on or always off,
regardless of the magnification.

• turn_off_range_rings routine — turns off the range rings.

• turn_on_range_rings routine — turns on the range rings.

• unzoom routine — de-magnifies the display so that the screen shows a broader
area.

• zoom routine — magnifies the display so that the screen shows an enlarged
depiction of an area centered around the mouse cursor.

The following routines allow the user to manipulate display colors:

• adjust_colors routine — adjusts the six adjustable colors.

• change_color routine — called when a locator event has been sensed by the
Apollo as a result of a cursor movement. If the cursor has been moved far
enough to trigger a response, change_color moves the color box by erasing the
present color box and drawing a new one in the new position.

• choose_route_color routine — allows the user to choose a new airplane
highlighting color.

• do_save_colors routine — saves the color setup for each overlay on the disk in
ASCII file format. It calls the inquire_rgb_values routine to convert the pixel
color values into red, green, blue color intensities.

• get_pixel_value routine — converts the RGB triplets into a pixel color value.

• get_colors routine — reads the color file in ASCII format. It calls the get_pi-
xel_value routine to convert the RGB triplets into a pixel color value.

ETMS System design Document
Version 5.8

10-36

• initialize_colors routine — sets the six adjustable colors to their standard
values.

ETMS System Design Document
Version 5.8

10-37

• inquire_rgb_values routine — converts the pixel color value into red, green,
and blue color intensity values.

• interpret_keystroke routine — interprets mouse/trackball/touchpad buttons
and/or keystrokes used to control the adjustment of the colors with the adjust
colors command, as follows:

o The left mouse button causes the colors to be set back to their
standard values.

o The right mouse button terminates color adjustment with the colors
just as they are at the time the button is pressed.

For the benefit of any Apollo nodes that might not have a mouse or
trackball, the following keyboard characters can be used: I for initialize,
return for accept the current values, or Q for quit the ASD program.

• menu_background_color routine — allows the user to choose a new menu
background color.

• menu_prompt_color routine — allows the user to choose a new menu prompt
color.

• pick_color routine — allows the user to pick a color.

• read_binary_color_file routine — reads the color file that was saved in binary
record format.

• restore_colors routine — reads a color setup file off the disk and sets up the
display the same way it was when the file was written.

• save_colors routine — stores the current color setup on a file on the disk, so
the display can be set up the same way in the future.

• select_background_color routine — allows the user to specify the display
background color. By default the color is pale green.

• select_default_airplane_color routine — allows the user to specify the default
airplane color. The default airplane color is the color that an airplane would be
if the user has not specified that it should be any other color. The user can
specify other colors with the selection color command or the default aircraft
color command. By default, the default airplane color is white.

The following routines allow the user to control what ETMS site he or she is getting data
from:

• show_site routine — shows which site the ASD is currently connected to.

• switch_site routine — switches to another site. If it switches successfully, it
displays a message telling the user that it has succeeded; otherwise, it displays

ETMS System design Document
Version 5.8

10-38

a message telling that it has failed.

• switch_all_asds routine — changes all ASD sites.

ETMS System Design Document
Version 5.8

10-39

The following routines are used to control the display of flight data:

• adjust_flagpole routine — draws a slanted data block, if the user puts the
cursor on a particular airplane icon, holds down the left mouse button, moves
the cursor, and then releases the left mouse button. Slanted data blocks are
permitted to allow the users to spread out the data blocks so they can read all
of them, instead of having them drawn over one another.

• adjust_future_flagpole routine — draws a slanted data block, if the user puts
the cursor on a particular proposed flight, holds down the left mouse button,
moves the cursor, and then releases the left mouse button. Slanted data blocks
allow the users to spread out the data blocks so they can read all of them,
instead of having the blocks drawn over each other.

• highlight_route routine — finds the airplane icon nearest to the cursor and
turns that airplane, its data block, and its flight path the specified color, so it
can be distinguished from the other flight paths on the screen.

• identify routine — toggles the data block for the flight nearest to the cursor
when the user hits the left mouse button.

• m1_test routine — responds to the user depressing the left mouse button
according to the following conditions:

(1) If the cursor is in the time bar interval, a time range selection message is
displayed and the ASD waits for the second time interval to be selected.

(2) If a report icon is selected, the selected report is displayed in a new text
window.

(3) If (1) and (2) do not apply, and if the button is released without moving,
the airplane nearest the cursor has its data block displayed. If the data
block is already displayed, the display is redrawn with that data block
removed.

If the cursor is moved before the left mouse button is released, the data
block is drawn at the position where the cursor was when the mouse
button was released.

• nearest_airplane routine — finds the airplane nearest to the cursor.

• nearest_future_flight routine — finds the proposed future flight nearest to the
cursor.

• normal_search routine — searches for a particular flight by name without
wildcards.

• remove_flight_paths routine — removes all the flights in the flight path linked
list from that list and also from the list of highlighted flights.

ETMS System design Document
Version 5.8

10-40

• search_and_rescue routine — searches for a particular flight, turns on its data
block, and puts the cursor on it, so a user can zoom in on it, if desired.

ETMS System Design Document
Version 5.8

10-41

• specify_lead_lines routine — gets the specifications for the lead lines.

• toggle_flight_paths routine — turns flight paths on, if they are off, or off, if
they are on.

• toggle_lead_lines routine — toggles lead lines on or off.

• toggle_org_dest routine — toggles origins and destinations on or off.

• toggle_route_following routine — toggles route following on or off.

• toggle_route_of_flight routine — toggles routes of flight on or off.

• toggle_tail_lines routine — toggles tail lines on or off.

• toggle_trace routine — toggles the trace feature on or off.

• turn_off_data_block routine — turns off the data block for a specified flight.

• turn_off_flight_paths routine — removes all flights from the flight path linked
list and then redraws the flight icons with their flight paths turned off.

• turn_off_highlight routine — turns off color highlighting for a specified flight.

• turn_on_flight_paths routine — responds to user request to display flight
paths. This routine causes the ASD to execute request_flight_paths to get the
list of flights that need flight paths. The received list is sent to the FTM, which
sends back the flight paths to the ASD, which then displays them.

• un_highlight routine — removes a flight from the list of color-highlighted
flights.

• un_flag routine — removes a flight from the flagged flight linked list.

• unzap routine — turns an aircraft icon back on after it has been zapped with
the \ command.

• wild_card_search routine — searches for a group of flights by name with
wildcards.

• zap routine — removes an aircraft icon from the screen in response to the \
command.

The following routines allow the user to select subsets of flight data to be displayed:

• select_color routine — allows the user to display a specified subset of the
flights in a specified color.

• select_data_block routine — displays data blocks for a specified subset of the
flights in the air.

ETMS System design Document
Version 5.8

10-42

• select_flag_parameters routine — selects the parameters for displaying data
blocks for a specified subset of the flights in the air.

ETMS System Design Document
Version 5.8

10-43

• select_flights routine — sets up the specifications for displaying only a selected
subset of the flights actually in the air. It also sets the time stamp fill color to
red, (instead of yellow), so the user will know that not all the flights are being
displayed.

• select_parameters routine — gets color selection parameters from the user.

• select_visibility_parameters routine — gets selection visibility parameters from
the user.

The following routines are used to control the display of monitor/alert data:

• display_report routine — invoked after the user displays alerts with the live
alerts command, selects a specific alerted element with the examine
command, then requests a report with the report command. The system
responds to these actions in the following sequence:

(1) ASD asks the TDB for a list of flights to be expected in the selected
element during the alert time period (by default, the next two hours).

(2) TDB returns this list to the ASD, which passes the list to ftp to get the
flight times and flight paths.

(3) ftp returns flight times and paths to the ASD, which formats the data,
creates a report pad, and displays the pad as a pane within the ASD
window.

The pane can be removed from the screen either by the standard Display
Manager exit command or by using the ASD report command again (as a
toggle).

• do_airport_bar_chart routine — calls draw_airport_bar chart, which actually
draws the pacing airport bar chart, when the user has given an airport
command, when a request has been sent to the FTM, and when the FTM has
sent back the airport data.

• examine_alerted_element routine — responds to the examine alerted element
command as follows:

(1) If monitor alerts are not currently being displayed, it displays an error
message and returns.

(2) If alerts are being displayed, it tests whether there is a report being
displayed in a pad pane, and if so, removes it from the screen.

(3) turns off any time bar alarms that may still be on from examining some
other alerted element.

ETMS System design Document
Version 5.8

10-44

(4) calls draw_time_bar to draw a new time bar for the newly selected
element.

• nearest_alert routine — finds the alerted element (airport, fix, or sector) closest
to the position of the cursor.

ETMS System Design Document
Version 5.8

10-45

• request_asp_data routine — asks the ASP for data. It sets the data_type to B
and then asks the ASP process for bar chart data. It is called by the bar chart
or report command.

• request_report routine — reads the list of flights reported by the ASP as being
predicted to be in the selected alerted element. Copies the list into a request
block (8192 bytes long) to be sent to ftp, which will return the positions and
flight paths for those flights.

• select_alerts routine — selects the types of alerts to be monitored.

• set_alert_time routine — prompts the user for the start and end of the time
period for which alerts are authorized.

• send_copy routine — prompts the user for a node name, and sends a copy of
the report to that node, if a report is currently being displayed when the user
gives a send copy command. The report is re-formatted so that it can be
printed out on 80—column width paper, if the user so chooses.

• toggle_authorized_alerts routine — toggles the authorization of the specified
alert type on or off.

• turn_green routine — turns an element green in the alert list only. It does not
re-draw the element in green. This does not happen until the screen is re-
drawn, either because a new alert has been received, or because the screen has
had to be re-drawn for some unrelated reason.

The following routines are used for the flight data replay feature. The replay functions also
make use of the flight data routines:

• date_time routine — gets a date and time from the user.

• get_dir_name routine — prompts the user for the name of the directory from
which to draw the replay data. Does some validity checking.

• replay routine — initiates replaying.

The following routines perform the script and adapt requests (adapt is just a special type of
script):

• adapt routine — executes an adaptation file. It is called once when the ASD
first starts up, and again any time the adaptation command is executed. The
only difference between this routine and script is that this routine will always
execute /etms5/asd/adapt/adaptations/adapt_default specifically, whereas
script allows the user to specify what file should be executed.

• adapt_command routine — called by the semicolon class script command. It
reads a specified adaptation file, not the standard

ETMS System design Document
Version 5.8

10-46

/etms5/asd/adapt/adaptations /adapt_default file, but
/etms5/asd/adapt/adaptations/filename, where file-name is the name of the
script file.

ETMS System Design Document
Version 5.8

10-47

• bomb_script routine — closes the scripts file, displays the error message, and
terminates the script processing by setting end_script variable to true.

• escape routine — allows a user to interrupt and terminate execution of a script
file. (It is sometimes desirable to write a script, so that it goes into a loop and
executes forever, until or unless someone stops it.)

• follow_script routine — executes a script or adaptation file.

• GetIntegerValue routine — reads and interprets an integer found in ASCII code
in the script or adaptation file.

• GetRealValue routine — reads and interprets a real number found in ASCII
code in the script or adaptation file.

• interpret_color routine — interprets the color name as specified in an
adaptation, colors_default, or script file. Color names must be specified on the
line cor-responding to where the prompt would come during interactive
execution of the command, and must be spelled exactly as follows: black, red,
green, blue, cyan, yellow, magenta, white, pale green, dark green,
reddish tan, brick red, pale blue, dull blue, khaki, brown.

• pre_move routine — executes a semicolon move command from a script or
adap—tation file.

• pre_zoom routine — executes a zoom command from a script or adaptation
file.

• script routine — executes a script file. The difference between this routine and
adapt is that this routine allows the user to specify what file should be
executed, whereas adapt will always execute /etms5/asd/adapt/adapt_default
specifically.

• script_repeat routine — used by script files to make an endless repetition of the
script. It returns to the beginning of the script file and starts executing the
script all over again. The user can stop the sequence by pressing the keyboard
esc key.

• script_wait routine — used by script files. There are times when a script needs
to wait a specified period of time (for example, to leave a display on the screen
long enough for the viewer to get a good look at it). When a script is running,
the prompt routine gets its reply by reading it from the script file, not by
prompting the user through the screen and keyboard.

• ScriptCommandError routine — formats the diagnostic message and invokes
the bomb_script routine to display the error message and end the script
processing.

ETMS System design Document
Version 5.8

10-48

• set_up_all_data_blocks_displayed routine — executes a keyboard command
(show data blocks) from a script or adaptation file.

• set_up_lead_lines routine — turns lead lines on or off from a script or
adaptation file.

ETMS System Design Document
Version 5.8

10-49

• set_up_range_rings routine — executes a semicolon range rings command
from a script or adaptation file.

• set_up_sua routine — turns special use areas on or off from a script or
adaptation file. An SUA can be specified, or all SUAs can be turned on or off
together by the following switches:

a — alert_areas

m — moas

p — prohibited_areas

r — restricted_areas

w — warning_areas

+ — all on

- — all off

• setup routine — puts an overlay in the displayed set, or removes it if there was
a — character in the script or adaptation file. In either case, the overlay is put
in the override set, indicating that the overlay is not to be turned on and off
automatically depending on the zoom level.

• triad_test routine — tests for three-letter keyboard commands (triads) in a
script or adaptation file. The triads tested for are as follows:

arr — for arrival fixes (to simulate the down-arrow-in-a-box key).

dep — for departure fixes (to simulate the up-arrow-in-a-box key).

pop — simulates the pop key.

The following routines perform functions related to drawing experimental routes and
individual jet and Victor airways:

• close_xroute routine — resets the drawing_experimental_route to false and
re-stores the cursor to the default blinking block.

• delete_all_j_or_v routine — deletes all the airways from the linked list in
memory.

• delete_route routine — deletes one airway from the list of individual airways
displayed on the screen.

• display_route routine — looks up an individual airway in the indexed database
and displays it.

• enter_airway_name routine — adds an airway name to the list of airways dis-
played.

ETMS System design Document
Version 5.8

10-50

• enter_xroute_node routine — adds a node to the linked list of points on the ex-
perimental flight path being drawn.

ETMS System Design Document
Version 5.8

10-51

• remove_all_jv_airways routine — goes through the list of individual airways
currently being displayed on the screen and deletes them.

• seek_navaid routine — looks for the NAVAID nearest to the cursor and
extends the experimental flight path to that point. It is called by a comma (,)
or left mouse button while drawing an experimental flight path.

The following routines create, display, and maintain the lat/lon points:

• dispose_latlong_list routine — disposes the lat/lon linked list.

• draw_latlong_list routine — displays the lat/lon points in the linked list.

• enqueue_latlong routine — appends the lat/lon point to the end of the lat/lon
linked list headed by the variable latlong_list_head. The end of the lat/lon list is
pointed to by the variable latlong_list_tail.

The following routines enable the user to undo certain ASD commands such as MOVE,
ZOOM, UNZOOM, and PROJECTION:

• empty_undo_stack routine — clears the undo stack.

• pop_view routine — restores the previous view settings from the undo stack.

• stack_view routine — saves the view center, projection type, and zoom_scale
on the stack pointed to by the variable undo_list_top.

The following routines create, display, and reset the legend text lines:

• draw_legend routine — draws the existing legend text.

• reset_legend routine — clears the existing legend text.

• set_legend routine — stores the input text string into the variable legend,
replaces any existing text, and redraws the new legend text.

The following routines allow the user to create and display weather maps:

• button_test routine — tests for the special weather-drawing mouse or trackball
or touchpad button commands and executes them.

• draw_symbol routine — as the user moves the symbol about the display, stores
the symbol at its current position after the user hits the left mouse button.
Continues moving another copy of the symbol in response to the user's action.
(See remove_old_symbol routine.)

• draw_weather_map routine — allows the user to draw a weather map on the
screen by hand.

• keystroke_test routine — tests for the special weather—drawing keystroke

ETMS System design Document
Version 5.8

10-52

com-mands, and executes them.

ETMS System Design Document
Version 5.8

10-53

• remove_old_symbol routine — As the user drags a symbol across the screen,
erases the old symbol so a new one can be drawn in close proximity, thus
giving the impression of motion.

10.2.2 The Process Queued Messages Module

The Process Queued Messages module is executed repeatedly as part of the main loop of the
Process Input module of the ASD. On each pass through the loop, the Process Queued
Messages module determines whether any new network message has arrived. If a new
message exists, this module gets the data from the message and determines what to do based
on the message contents. In most cases, the Process Queued Messages module invokes the
Draw Display rou-tines to display the data to the user.

If the received message is a status reply of the previous user request, the Draw Displays
module is called to display the status message. If the received message is a map update from
the FTM process and flights is set in the displayed variable, the Draw Displays module is
invoked to redraw the ASD window to show new traffic pattern for en-routed flights. If the
received message is from the ASP process, the Draw Displays module is called to redraw the
alerted elements, time bar, and bar chart (if displayed).

10.2.3 The replay_test Routine

The replay_test routine is invoked by the Process Input module via the flight_check routine on
each pass through the main loop, if the global replaying flag is set. The replay_test routine
checks whether the current time is past the next_replay_time.

If true, the replay_test routine searches the directory containing the replay data for the next
map file in the replay time interval and calls the draw_airplanes routine to update the screen.
If no more map files are found in the replay interval, a message is displayed, and the
replaying flag is reset. If the freeze flag is set, no update is performed (see Figure 10-6).

10.2.4 The test_icons Routine

The test_icons routine is invoked during each loop of the Process Input module. The
test_icons routine first checks whether any report window has been closed. If so, it invokes
the close_all _windows routine to close all of the report windows and restores the ASD
window to its original size. Then, the test_icons routine checks the cursor position against the
positions of any dis-played icons and updates the global variables used to maintain the icons
status. The actual displaying of the icons and handling of user operations on icons is
performed in the Respond To User Requests module.

If any icons are displayed, the test_icons routine loops through the list of displayed icons. For
each icon, test_icons determines if the cursor is currently in the icon box. If true, the
selected_icon pointer variable is set to that icon record node, and the icon_reversed flag for

ETMS System design Document
Version 5.8

10-54

that icon is set true. If the cursor is not in the icon, the icon_reversed flag is set false. If
the cursor is in no icon, the icon_selected pointer is set to nil (see Figure 10-7).

ETMS System Design Document
Version 5.8

10-55

Error Conditions and Handling

Errors incurred during the Process Input module can be fatal or non-fatal. Non-fatal errors
cause an error message to be displayed, but the ASD continues to execute. Fatal errors cause
the ASD to terminate execution.

Before the ASD terminates its execution, it cleans up by invoking the cleanup_handler routine.

Begin

draw
airplanes

no more files
?

display
message

Yes

No

get next replay
file

End

Yes

get current
time

No

time for next
update

?

no more files
?

Figure 10-6. Logic for the replay_test Routine

ETMS System design Document
Version 5.8

10-56

Begin

cursor in i con
?

d r a w n o r m a l

Y e s

N o

return

Y e s

N o

a n y i c o n s
d isp layed

?

fo r each
i c o n d o

d o n e

icon a l ready
r e v e r s e d ?

icon reversed
previously?

Y e s

draw in reve rse
c o l o r

s a v e s e l e c t e d
i con

Y e s

N o

N o

t es t_w indows

cursor in i con
?

icon already
reversed?

Figure 10-7. Logic for the test_icons Routine

ETMS System Design Document
Version 5.8

10-57

10.3 The Draw Displays Module

The Draw Displays module contains routines that are invoked to generate the various types of
displays available to the user. The Draw Display routines are invoked separately from many
places within the Process Input module in response to a user request or data arriving from the
network. The Draw Display routines are also invoked from the Initialize module.

Input

The Draw Display routines get the following data from the Process Input and Initialize
modules:

• Display parameters — many variables including display type (color/bw),
number of display color planes, display color set, current window size,
maximum window size, font index array, color array, fill patterns, menu box
sizes, cursor position, data displayed flags, map center, translation offsets,
zoom scale, audible alarm settings, error log flag, and special mode flags (for
experimental mode, large screen mode, etc.).

• Display data — dynamic data needed to draw the many displays that can be
requested by the user. Includes ASD updates (active flight data), flight list and
count reports, ARRD reports, weather reports, alerts, bar charts, alert reports,
and alerted flight displays.

Output

The Draw Display routines do not generate output.

Processing

The Draw Display module is implemented as many separate routines. The routines are either
invoked by other modules or by other Draw Display routines. The Draw Display routines are
summarized in the following lists, organized by general type of function.

The following routine is used for the initial display:

• display_title routine — displays the program title, a disclaimer warning the user
that this is an experimental prototype program, and the version number. The
title is kept on the screen for ten seconds, unless the program is running in the
privileged directory used only by the software developers, in which case it is
displayed momentarily.

The following routines are used to draw the map displays:

• arcsin routine — created since Pascal has no arcsine routine; it uses arctan.

• blt_view routine — when a new flight data update becomes available, blt_view

ETMS System design Document
Version 5.8

10-58

draws a red light bar in the center of the top of the screen, creates a new
display in a background bit-map, and copies it onto the screen. Thus, the
airplanes appear to jump to their new positions.

ETMS System Design Document
Version 5.8

10-59

The effect created by this routine is preferable to drawing the new flight data
on the screen while the user is watching, It is not only aesthetically more
pleasing, but it gives the user more time to study the old situation.

• clear_parameters routine — clears all the flight display parameters.

• do_polyline routine — reads a polyline from the map.gpr file (in its unique
format) and draws it on the screen, scaled by scale_x and scale_y.

• do_special_symbol routine — draws the special no data and no TZs symbols
on the display to indicate that one of the ARTCCs is not sending data. These
symbols have two colors, (a black airplane or radar dish with the international
prohibition symbol, a red circle and slanted bar, drawn over it).

• do_super_move routine — is called by super_move to do the actual move.

• do_text_string routine — reads a text string from the map.gpr file, (in its
unique format), and draws it on the screen (scaled by scale_x and scale_y).

• draw_background routine — draws the background overlays of the display, but
does not draw flights or monitor alerts. It is used by view, blt_view, re_draw,
and re_map.

• draw_latlong_list routine — displays the lat/lon points in the linked list.

• draw_legend routine — draws the existing legend text.

• draw_overlay routine — a general purpose routine that draws any overlay. The
overlays are: high_sectors, low_sectors, oceanic_sectors, superhigh_sectors,
boundaries, artccs, jet_routes, victor_routes, arrival_fixes, departure_fixes,
navaids, pacing_airports, terminals, alert_areas, moas, prohibited_areas,
restricted_areas, warning_areas, individual_jet_and_victor_routes, exper-
imental_route, weather_map, range_rings, and flights.

While draw_overlay is a general purpose routine, there are a lot of special tests
to provide for unique treatment for some of the overlays.

• draw_range_rings routine — draws the range rings.

• DrawCircle routine — draws the circle of a given radius at the specified center
by computing the circle points and invoking the DrawCirclePoints routine.

• DrawCirclePoints routine — displays circle points of a given radius around the
specified center point.

• expand routine — maintains the proportional integrity of a map display when
the user executes the zoom command. Without this routine, for example, if a
map of the U.S. were magnified by 2, only the northwestern one—quarter of
the country would be displayed.

ETMS System design Document
Version 5.8

10-60

In order to zoom in and keep the magnified map centered upon the same center
point, expand adds an expansion offset to x and y. This routine computes these
offsets.

• inverse_projection routine — inverse of the projection routine (see next item).
It converts x-y coordinates to latitude-longitude of the Albers Equal Area
Projec-tion.

• projection routine — converts latitude-longitude values to x-y coordinates. The
Albers Equal Area Projection is a conic projection that intersects the surface
of the globe at two standard latitudes and is centered about one standard
longitude (zlon).

• re_draw routine — re-draws the display, assuming that the translation and
magnification have not been changed since last time.

• re_map routine — re-draws the display, assuming that the translation and
magni—fication have not been changed since last time. It is a special routine
for the dis—play manager to call whenever the screen needs to be re-drawn;
for example, when the size or shape of the window has been changed.

• refresh_asd_view routine — checks if the ASD's window is still being
obscured. If so, it simply resets the window_refresh_needed to true and
returns. Otherwise, it calls the re_map routine passing in the window_moved
and window_popped values as parameters.

• rr_scale_x routine — a special scaling function for use with range rings. It is
differ—ent from the scaling algorithm used in view.pas.

• rr_scale_y routine — a special scaling function for use with range rings. It is
different from the scaling algorithm used in view.pas.

• scale_x routine — takes an x coordinate as output from the Albers projection
algorithm and scales it according to the current window size, translation, and
magnification.

• scale_y routine — takes a y coordinate as output from the Albers projection
algorithm and scales it according to the current window size, translation, and
magnification.

• set_max_min routine — calculates the maximum and minimum values of un-
scaled x and y that can, (when scaled), fit in the current window.

• set_text_displayed routine — tests if text should be displayed at the current
magnification. If certain classes of text are displayed at too small a
magnification, the screen will be unreasonably cluttered.

• set_view_center routine — restores the view center to the previous one before

ETMS System Design Document
Version 5.8

10-61

the view is re-drawn to keep the view center from changing unexpectedly.

ETMS System design Document
Version 5.8

10-62

• setup_color_node routine — sets up the initial conditions for a color node.

• skip_text_string routine — skips over a text string from the map.gpr file, (in its
unique format), and does not draw it on the screen.

• text_in_box routine — draws a number in a box to label the range rings.

• translate routine — in addition to the expansion offset, adds amounts to x and
y to slide the picture over to the arbitrary center point that the user wants.

• view routine — draws the display, assuming that the magnification or
translation may have been changed. It lets the user watch the flights being
drawn on the screen.

• unscale_x routine — inverse of scale_x. It takes scaled coordinates and
calculates the original coordinate that it must have been when it came out of the
Albers projection.

• unscale_y routine — inverse of scale_y. It takes scaled coordinates and
calculates the original coordinate that it must have been when it came out of the
Albers projection.

• window_refresh_handler routine — saves the window redraw conditions into
the global variable window_popped and window_moved, and sets the
window_re-fresh_needed variable to true.

This routine should be specified in the gpr_$set_refresh_entry call so that the
system will invoke the window_refresh_handler whenever the ASD requires up-
date as a result of window resize, move, or pop.

The following routines are used to support the adjust colors command:

• draw_box routine — draws a colored box to represent the intensity value of the
specified color.

• draw_boxes routine — draws a colored box to represent the intensity value of
each of the six adjustable colors available on the least sophisticated Apollo
computers likely to run the ASD program.

• erase_box routine — erases a color box by copying the background onto the
dis-play in the place where the color box had been. The color box appears to
move smoothly across the screen.

• erase_boxes routine — erases all the color boxes.

The following routines are used to draw the flight data displays:

• actype_qualifies routine — tests whether an aircraft type falls within a
particular set of selection criteria.

ETMS System Design Document
Version 5.8

10-63

• adjust_flagpole routine — draws a slanted data block. Slanted data blocks
allow the users to spread out the data blocks so they can read all of them,
instead of having them drawn over each other.

• adjust_for_id_overlap routine — builds a linked list of all the flights for a
particular departure point and allocates a different x-y position at which to
display each flight's identifier. Usually, several flights are waiting to take off
from any given airport. This routine avoids overprinting their data blocks at a
single point on the screen.

• airplane_selected routine — tests if a flight falls within a particular set of
selection criteria.

• airplane_visible routine — tests if a flight falls within a particular set of
visibility criteria.

• altitude_qualifies routine — tests if a plane's altitude falls within a particular set
of selection criteria.

• check_flight_paths routine — checks all the flights in the flight path linked list,
first to see whether they are already in the air. If so, they are displayed as
flying aircraft; otherwise, they are displayed as waiting on the ground.

• compute_altitude routine — interprets the plane's altitude. In some cases, a
flight may have a block of altitudes assigned to it, in which case
compute_altitude uses logic to see if any part of its block of assigned altitudes
falls within the range the program is testing for.

• data_block_displayed routine — tests if there is any data block displayed.

• determine_color routine — tests if a flight should be displayed in a special
color.

• display_aircraft_type routine — displays the aircraft type in the data block.

• display_buffer_size routine — displays an error message when a record is
found to be the wrong length. Since the route file has a fairly complicated
format, it is necessary to do a lot of checking to make sure it is being read
correctly.

• display_fld10 routine — displays the Field 10 of the plane's flight plan, if it is
known; otherwise, it displays unkw.

• display_org_dest routine — looks up a plane's origin and destination and
displays them in its data block.

• draw_airplane routine — draws an airplane icon.

• draw_airplanes routine — draws the airplanes as a background bitmap, then

ETMS System design Document
Version 5.8

10-64

copies them onto the screen so that they all appear at once.

• draw_data_block routine — draws the data block for a flight.

• draw_lead_line routine — draws a lead line for a flight. A lead line points out in
front of the airplane icon a specific distance, based either on how far the plane
will move in a specified time, or based on a specified distance.

• draw_time_stamp routine — draws a time stamp on the upper left-hand corner
of the screen.

• fill_fld10 routine — draws the Field 10 of the flight plan for the specified
flight. If this information is not available, it sends the message unkw.

• fix_qualifies routine — tests whether a fix falls within a particular set of
selection criteria.

• follow_route routine — plots a flight path, given a list and count of waypoints.

• keyword_qualifies routine — tests if a keyword falls within a particular set of
selection criteria.

• on_the_ground routine — draws a data block for a flight that is still on the
ground, waiting to take off. The regular data block for a flight in the air has
places for information that is not relevant to a flight that is still on the ground,
for example, the altitude and ground speed; hence, this simplified data block
was developed.

• light_bar routine — draws a small red bar at the center of the top of the screen
to indicate that flight data is being updated. This informs the user that the
computer may be delayed in responding to commands.

• minutes_to_destination routine — looks up the plane's destination and calls
minutes _to_point to calculate how long it would take to get there. If it cannot
find the destination in map.gpr, minutes_to_destination returns zero.

• minutes_to_point routine — calculates the number of minutes it would take for
a flight to reach a given point, if the plane were to continue flying at its present
speed until it reached that point. This routine makes no allowance for flight per-
formance profile, altitude, slowing down to land, etc.

• org_dest routine — displays the origin and destination of the specified flight.

• origin_qualifies routine — tests if a plane's origin falls within a particular set of
selection criteria.

• prefix_qualifies routine — tests if a prefix falls within a particular set of
selection criteria.

ETMS System Design Document
Version 5.8

10-65

• read_flight_data routine — reads the map file and looks at all the airplanes. It
then displays all the flights that are supposed to be displayed according to the
visibility and selection criteria at the time.

• re_draw_data_blocks routine — re-draws all the flight data blocks without
drawing all the rest of the display.

• sector_qualifies routine — tests if a sector falls within a particular set of
selection criteria.

• suffix_qualifies routine — tests if a suffix falls within a particular set of
selection criteria.

• time_stamp routine — draws a time stamp on the upper left-hand corner of the
screen if live data are being displayed; draws a date block in the upper right-
hand corner, if the ASD is doing a replay.

The following routines are used to generate the monitor/alert displays:

• add_minutes routine — adds integer minutes to a time value in time_$clock_t
format.

• adjust_for_overlap routine — in the event that two alerted elements are in the
same place on the display, or at least near enough so that their symbols overlap,
moves the newer one downward by 15 pixels.

• display_line routine — displays a line of text on the screen.

• do_asp_bar_chart routine — draws a bar chart, using data already furnished by
the ASP.

• draw_airport_bar_chart routine — draws a pacing airport bar chart and keeps
it displayed until the user depresses any key on the keyboard.

• draw_airport_bars routine — draws the bars for an airport bar chart.

• draw_airport_or_fix_alert routine — draws an airport or fix alert on the map.
The only difference between an airport alert and a fix alert is the symbol
displayed. Sector alerts are drawn in a much more complicated manner and
require a dif-ferent routine.

• draw_arrow routine — draws a red arrow on the time bar to point to the
present Universal Coordinated Time.

• draw_bar routine — draws a single bar for a bar chart.

• draw_bar_chart routine — invoked for drawing a bar chart. It calls the
appropriate lower level routine according to the type of bar chart needed.

• draw_bar_chart_airport routine — draws a bar chart for an airport.

ETMS System design Document
Version 5.8

10-66

• draw_bar_chart_fix routine — draws a bar chart for a fix.

• draw_bar_chart_sector routine — draws a bar chart for a sector.

• draw_color_block routine — fills the time bar strip of color blocks, one for
each time interval in the time span. If no element has been examined , all blocks
appear in the background color. If an element has been examined, the alerted
intervals appear in red, and the other intervals appear in green.

• draw_colored_sector routine — draws an alerted sector in the appropriate
color, depending on which kind of alert is posted for that sector. The sector
boundaries have already been stored in the alert node; a pointer has been passed
to this routine.

• draw_pacing_airport_bars routine — draws the bars for a pacing airport bar
chart.

• draw_regular_bars routine — draws the bars for a regular (i.e. not an airport)
bar chart.

• draw_time_bar routine — draws the time bar for the Monitor/Alert feature.

• legend routine — displays the legend that explains the meaning of the bars on
the bar chart.

• remove_bar_graph routine — removes a bar chart from the screen. It does it
by simply re-drawing the display with the drawing-bar-chart switch off.

• set_alert_colors routine — sets up the text font, text value, draw value, and fill
color according to the type of alert.

• set_up_stripes routine — sets up the fill pattern and color for cross-hatching in
alerted sectors displays. Alerted sectors are drawn with stripes shown in
different cross-hatch patterns, depending on whether the sector is a high
sector, low sector, or superhigh sector, and different colors, depending on the
alert level of the sector.

• sound_all_alarms routine — scans the entire list of alerted elements, then
displays classes of elements that the user has authorized to be displayed. The
select alerts command is used to specify the types of alerted elements that
may be displayed.

• time_bar_tick_mark routine — draws a tick mark for the time bar.

• time_ok routine — checks all the time intervals from blue_line_start_interval
to blue_line_end_interval to make sure that at least one of the time periods
has a red alert.

• time_to_x routine — converts a time value to an x-coordinate value.

ETMS System Design Document
Version 5.8

10-67

• triangle routine — draws a triangle to represent a fix alert.

The following routines are used to draw experimental routes and selected jet and Victor
airways.

• follow_chain routine — follows the linked list of individual airways to be
displayed on the screen; displays each airway in turn.

• follow_xroute routine — follows the linked list of points on the experimental
route and draws it on the screen.

• jv1 routine — draws an individual airway.

• label_airway routine — puts a label on the middle of a segment of an airway.

The following routines support the menu functions:

• contrasting_x routine — draws an x across a menu color box in a color
contrasting to the currently selected color.

• draw_color_box routine — invoked when the user opts to use the keyboard
color boxes to specify a color, rather than using the menu color palette. This
routine draws one color box. At present, the user can select from among 16
colors.

• draw_menu_box routine — draws one menu box.

• pop_color_block routine — pops the 16 keyboard color boxes up on the screen
as a block.

• pop_menu routine — pops the menu up on the screen and makes the cursor
active.

• position_menu routine — determines the position at menu levels are drawn,
according to the following conditions:

o If the cursor is away from the edges of the ASD window, positions menus
near the cursor.

o When the cursor is near one of the four edges of the window, positions
menus to fit entirely inside the window, which requires menus to overlap a
previous menu or menus.

• remove_all_menus routine — removes all the menus.

• remove_last_menu routine — removes the last menu that was put up on the
display. This happens whenever the cursor is moved up, down, or backwards
outside of the area covered by the menu.

• reverse_values routine — turns the menu box that has the cursor in it red
instead of its standard color to highlight the option being selected.

ETMS System design Document
Version 5.8

10-68

• shadow routine — draws a shadow below and to the right of the menu. It
makes the menu appear to be floating in the air above the surface of the screen,
thus making it easier to see.

The following routines support the show command processing:

• delete_sho_location — removes individual identifiers displayed by the show
command.

• draw_individual_element — checks whether a selected identifier is currently
being displayed by the show command. If not, the identifier is drawn.

• draw_selected_map_elements — draws the list of selected identifiers.

ETMS System Design Document
Version 5.8

10-69

• enter_sho_location — creates the list of identifiers specified by the user.

• get_word2 — searches for identifiers within a list for a — character. This
identifies items the user wants to delete.

• init_show_table — initializes the list of different types of overlays that can be
displayed by the show command.

• lookup_place — finds the identifiers that were entered by the user among the
list of actual identifers and checks if they are valid.

• remove_all_places_shown — removes all the identifiers displayed by the show
command.

• show_places — main loop that checks if the user is entering identifiers or
deleting identifiers.

The following routines support the semicolon command processing:

• deallocate_prompt_background_bitmap routine — deallocates the prompt
back-ground bitmap, which had been used to store the part of the display that
was overwritten by the message.

• display_and_scroll routine — when the user enters input in response to a
prompt that is too small to contain the input, this routine scrolls the input to the
left. This action can result in the input appearing outside the window altogether.

• display_error_message routine — displays an error message and waits until the
user types some character from the keyboard. This routine is used to ensure
that the user notices the error message.

• display_message routine — displays a message on the screen. Before displaying
the message the routine copies the present contents of the part of the screen
where the message will be displayed to a background bitmap, so it can be
copied back later.

• display_msg_2_seconds routine — displays a message for two seconds; then,
restores the screen to its former display.

• invalid_response routine — displays a message: Invalid response. Hit space bar.

• prompt routine — prompts the user for information and accepts the reply.

• remove_message routine — removes a message from the screen by restoring
the previous contents of that part of the screen from the prompt background
bitmap.

The following routines are used to draw the weather products from the weather server:

ETMS System design Document
Version 5.8

10-70

• draw_erl_polyline routine — draws either a filled polygon or polylines. If the
polygon represents a hole, fills it with the background color and draws the
contour in level 1; otherwise, draws the polylines.

ETMS System Design Document
Version 5.8

10-71

• draw_erl_multiline routine — draws a set of disjoint line segments.

• draw_erl_text routine — draws the weather text.

• erl — maps the weather file into memory, checks for any file error, parses,
and displays the data.

• lightning routine — draws the lightning weather symbol.

• select_font routine — sets the text font to the font number read from the file.

• set_absolute_addressing routine — determines the whether to use absolute ad-
dressing. When frame addressing is in used, all coordinates refer to a location
in the frame and that items will stay at the same location on the visible frame
regardless of the amount or location of the graphics being displayed upon.

• set_character_magnification routine — sets the character magnification read
from the file.

• set_character_spacing routine — sets the character spacing. Character
spacings are defined as a percentage of the default for that font and
magnification.

• set_character_style routine — sets the character style to the one read from the
file.

• set_display_class routine — sets the display class to the one read from the file.

• set_draw_color routine — gets the color intensity value.

• set_text_centering routine — controls what part of a text string is actually
placed at its location coordinates. Left to right is always considered to be in the
update dir—ection. Top left (00) is the default.

• set_text_direction routine — sets the text direction to the one read from the file.

• set_relative_addressing routine — sets to the relative addressing defined in the
file. This is a mode where coordinates that follow refer to an offset from the
origin.

• set_vector_texture routine — sets the line texture. The texture map is a bit map
that defines the line texture. Each bit corresponds to one pixel along a line. The
pattern length is the number of bits to use in the texture map (starting with the
least significant bit) before repeating it, and can range from 0 to 16 decimal.

• specify_input_size routine — sets the frame size. It is used to compute the
aspect ratio. If used, the first directive in the weather product must specify the
frame size.

ETMS System design Document
Version 5.8

10-72

• wx_graphics routine — invokes the erl routine to read and display the weather
product data in the wx_maps directory.

ETMS System Design Document
Version 5.8

10-73

• reroute_user_line_style — sets the type of line to be drawn (i.e., dotted or
solid).

• reroute_solid_line — draws a solid line which is defined within the reroute file.

• reroute_line_thickness — sets the thickness of the line to be drawn with a
reroute file.

• reroute_text_line_color — sets the text and line color for a reroute weather file.

• reroute_text_font — sets the font for any text within the reroute weather file.

The following routines are used to draw the weather maps:

• delete_old_string_chain routine — deletes the old string chain, because a new
one is being created.

• delete_old_weather_chain routine — deletes the old weather symbol chain,
because a new one is being created.

• delete_text routine — deletes a string of weather text from the screen; replaces
it with the background that used to be there before the text was typed in.

• draw_circle routine — draws a circle; it is used for drawing warm, stationary,
and occluded fronts. On the displayed front, it looks like a semi-circle, but that
is only because half of the circle is hidden behind the rectangular segment.

• draw_fronts routine — draws lines, areas, and all four kinds of fronts.

• draw_menu routine — draws the menu of weather symbols from which the
user can make selections.

• draw_segment routine — draws one tiny segment of a front.

• draw_symbol routine — draws a specified symbol at a specified x-y location on
the screen.

• draw_weather_symbol routine — scales the position coordinates and displays
the hand-drawn weather symbol by calling the draw_symbol routine.

• draw_text routine — draws typed text on the screen as the user types it in;
enters it into the string chain at the same time.

• draw_tick_mark routine — draws a tick mark, that can be either a triangle or a
circle.

• draw_triangle routine — draws a triangle; it is used for drawing cold,
stationary, and occluded fronts.

• enter_new_front routine — adds a new front to the end of the front list.

ETMS System design Document
Version 5.8

10-74

• enter_string routine — enters a text string into the text string chain.

ETMS System Design Document
Version 5.8

10-75

• enter_symbol routine — enters a weather symbol into the chain.

• erase routine — erases the weather symbol or text nearest the cursor position.

• erase_front routine — erases a front, then restores the background that was
pre-viously behind it.

• find_nearest_text routine — finds the string of weather text nearest the cursor.

• follow_string_chain routine — follows the weather text strings that are stored
in a linked list, and draws the weather map.

• follow_weather_chain routine — follows the weather symbols that are stored
in a linked list, and draws the weather map.

• front routine — draws fronts, areas, and lines.

• plus_90 routine — called only by draw_segment. It draws a rectangle, centered
around the segment. The name is derived from the fact that the two short sides
of the rectangle are at a 90-degree angle to the long sides.

• put_front routine — displays a weather front.

• read_weather routine — reads in a weather data file from the disk and draws
the weather data symbols on the screen.

• restore_symbols routine — goes through the chain of weather symbols and
draws them on the screen.

• save_background routine — saves the entire display bitmap onto the
background bitmap.

• set_appropriate_font routine — sets up the appropriate font for the weather
sym—bols. There are two fonts; one very small set for very small windows
and a normal set for normal windows.

• set_symbol_color routine — sets the color for a weather symbol. If it is Q (the
big capital L for a low), it appears in red. If it is R (the big capital H for a
high), it appears in blue. Otherwise, the weather symbols appear in the same
color a flight icon would.

• write_text routine — writes text on the screen as the user types it in from the
keyboard; stores it in memory in the string list at the same time.

• write_weather routine — writes all the weather data out onto a file on the disk,
so the user can read it back in later, if desired.

Error Conditions and Handling

ETMS System design Document
Version 5.8

10-76

Errors incurred during the Draw Displays module can be fatal or non-fatal. Non-fatal errors
cause an error message to be displayed, but the ASD continues to execute. Fatal errors cause
the ASD to terminate execution.

ETMS System Design Document
Version 5.8

10-77

Before the ASD terminates its execution, it cleans up by invoking the cleanup_handler routine.
See Section 12.1 for details of the clean-up processing.

10.4 ASD Source Code Organization

This section describes the source code used in building the executable version of the ASD.
The source code resides in Pascal/C files. Each file contains one or more functional units
called a routine. A routine is implemented as either a Pascal function or procedure. The
Pascal/C files have been organized as elements in a Domain System Engineering Environment
(DSEE) library called map_lib. Most modules are written in Pascal but some are written in C.
Hence, both the Pascal compiler and the C compiler are required to compile the source files.

Before the Aircraft Situation Display can be executed, the following DSEE's commands must
be issued in order to compile the appropriate files:

(1) set system map_sys

(2) set model map.sml

(3) set library map_lib

(4) edit thread -mod

Type in the following lines and press the exit function key to save the model thread and exit
the Domain's editor:

—reserved
[asd_etms_5.1.0] —when_exists

(5) set model map.sml

NOTE: The DSEE's command set model must be executed after every change in the build model
thread via the edit thread -mod command.

(6) edit thread

Type in (or uncomment) the appropriate lines and press the exit function key to save the
build thread and exit the Domain's editor. The following shows configuration for a prototype:

PROTOTYPE VERSION — for FAA evaluation release

—FOR asd_version.pas —USE_OPTIONS —subchk —comchk —opt 0 —config prototype —config whatstring

—FOR map.pas —USE_OPTIONS —subchk —comchk —opt 0 —config prototype

—FOR asd_net_add.pas —USE_OPTIONS —subchk —comchk —opt 0 —config prototype

—FOR prompt.pas —USE_OPTIONS —subchk —comchk —opt 0 —config prototype

—FOR ?*.pas —USE_OPTIONS —subchk —comchk —opt 0

—FOR ?*.c —USE_OPTIONS —subchk —comchk —opt 0

BETA VERSION— for BETA test sites (key field sites)

#—FOR asd_version.pas —USE_OPTIONS —subchk —comchk —opt 0 —config beta —config whatstring

#—FOR map.pas —USE_OPTIONS —subchk —comchk —opt 0 —config beta

#—FOR asd_net_add.pas —USE_OPTIONS —subchk —comchk —opt 0 —config beta

#—FOR prompt.pas —USE_OPTIONS —subchk —comchk —opt 0 —config beta

ETMS System design Document
Version 5.8

10-78

#—FOR ?*.pas —USE_OPTIONS —subchk —comchk —opt 0

#—FOR ?*.c —USE_OPTIONS —subchk —comchk —opt 0

RELEASE VERSION — for FIELD RELEASE — operational version

#—FOR asd_version.pas —USE_OPTIONS —subchk —comchk —opt 0 —config whatstring

#—FOR map.pas —USE_OPTIONS —subchk —comchk —opt 0

#—FOR asd_net_add.pas —USE_OPTIONS —subchk —comchk —opt 0

#—FOR prompt.pas —USE_OPTIONS —subchk —comchk —opt 0

#—FOR ?*.pas —USE_OPTIONS —subchk —comchk —opt 0

#—FOR ?*.c —USE_OPTIONS —subchk —comchk —opt 0

DEBUG VERSION

#—FOR map.pas —USE_OPTIONS —subchk —comchk —opt 0 —config prototype —config whatstring —dba

#—FOR asd_net_add.pas —USE_OPTIONS —subchk —comchk —opt 0 —config prototype —dba

#—FOR prompt.pas —USE_OPTIONS —subchk —comchk —opt 0 —config prototype —dba

#—FOR asd_version.pas —USE_OPTIONS —subchk —comchk —opt 0 —config prototype —dba

#—FOR ?*.pas —USE_OPTIONS —subchk —comchk —opt 0 —dba

#—FOR ?*.c —USE_OPTIONS —subchk —comchk —opt 0

Version 5.1

—reserved

[asd_etms_v5.1.0] —when_exists

(7) build map.exec

To create a release after building the ASD with new changes, execute the following DSEE's
command:

(8) create release release_directory_name —from map.exec!timestamp —exp ?*

10.5 ASD Version Naming Conventions

The following describes the conventions for naming the ASD versions.

10.5.1 Naming the Build Version in DSEE

•• For FAA evaluation release, specify the process name (e.g. asd) followed by
the prototype version number (e.g. v5.0.p68). For instance, after executing the
DSEE's build command, invoke the following DSEE's command to name the
build version to asd.v5.0.p68:

name version map.exec!timestamp asd.v5.0.p68

•• For field release, specify the process name (e.g. asd), the _etms_ tag, and the
re-lease version number (e.g. v5.1.0). For instance, after executing the DSEE's
build command, invoke the following DSEE's command to name the build
version to asd_etms_v5.1.0:

name version map.exec!timestamp asd_etms_v5.1.0

ETMS System Design Document
Version 5.8

10-79

10.5.2 Compiler Options

The appropriate compiler options that are used to name the ASD version are shown in Table
10-1.

Table 10-1. Compiler Options

Version Naming via Compiler Options

Compiler Options Explanations

—config whatstring Includes whatstring variable in various modules. ASD version is defined in the
asd_version.ins.pas which is included in four modules. In order to prevent what

command from returning version number four times (once for each module it is
included within), use the –config whatstring option on only one module:
asd_version.pas.

—config test Builds the test version of the ASD. The startup title page identifies the software as
PROTOTYPE SOFTWARE FOR IN –HOUSE TEST and displays test version number
(baseline version with the .test appended (e.g. 5.0.p68.test).

—config prototype Builds the prototype version of ASD. The startup title page identifies the software
as PROTOTYPE SOFTWARE OR EVAULATUION and displays the prototype
version number (e.g. 5.0.p68 would be the 68th prototype version built).

—config beta Builds the beta version of the ASD. The startup title page identifies the software
as PROTOTYPE SOFTWARE FOR EVALUATION and displays the beta version
number (e.g. 5.0b3 would be the third version delivered to beta sites).

(none) Builds the field release version of the ASD. The startup title pag does not identify
the software as prototype. Only the field release version number is displayed (e.g.
5.1.0).

NOTE: There are other compiler options for adr and worldwide. They are defined in the
asd_version.ins.pas include file.

10.6 ASD Data Structure Tables

The Pascal record definitions of all data files are located in map.ins.pas.

10.6.1 The /etms5/asd/data/map.gpr5 File

The /etms5/asd/data/map.gpr5 is a homegrown graphics metafile. The file begins with a
directory table that points to the starting position of each overlay, i.e., each of the independent
sets of items that can be drawn on the display, such as state and national boundaries, ARTCC

ETMS System design Document
Version 5.8

10-80

boundaries, sector boundaries, etc. The data that the program finds at the address pointed to
by the directory consists of keycodes followed by data. There are three keycodes:

• polyline, consisting of

o a polyline header, containing the size; and the minimum and
maximum values of x and y that occur in the polyline. These values
in the header make it possible to tell immediately whether any part of
the polyline lies within the part of the display space that is currently
displayed on the screen. If none of it is to be displayed, the data can
be passed over with no further processing.

o the data points, in unscaled Albers Equal Area Projection coordinates.

• text_string, consisting of:

o text_header, containing the size of the data stream in bytes; and the
x and y coordinates, in unscaled Albers Equal Area Projection
coordinates, where the text is to be displayed.

o the text string.

• end_of_overlay, which consists of just the keycode itself.

ETMS System Design Document
Version 5.8

10-81

10.6.2 Flight Data

Flight data comes from the FTM process in the form of map file. The map file record format
is
shown in Table 102.

Table 10-2. Map File Record

id id_record
altitude word8
destination dest_name_t
aircraft_type actype_t
flight_index integer32
eta integer32
seek_key All 1's if not rte record

written.
integer32

alt1 integer
alt2 integer
x integer
y integer
old_x integer
old_y integer
lat integer
lon integer
old_lat integer
old_lon integer
heading integer
groundspeed integer
cta integer
flags 0..15
source_flags integer
remarks_flags integer
geo_filter integer
filed_alt integer
filed_alt2 integer
filed_speed integer
filler array 1..13 of integer
center_id char
altitude_type char

ETMS System design Document
Version 5.8

10-82

lat_lon_heading char
symbol For normal aircraft:

a = headed north
b= headed northeast
c = headed east
d = headed southeast
e = headed south
f = headed southwest
g = headed west
h = headed northwest

For hollow aircraft:
i = headed north
j = headed northeast
k = headed east
l = headed southeast
m = headed south
n = headed southwest
o = headed west
p = headed northwest

Display patterns:
. = dot
^ = small circle
— = large circle

char

waypoints # of 4 bytes waypoints char
sectors # of 6 bytes sectors char
fixes # of 6 bytes fixes char
airways # of 6 bytes airways char
centers # of 3 bytes center

identifiers
char

route_bytes # of bytes char
acenter Arrival code char
dcenter Departure code char

ETMS System Design Document
Version 5.8

10-83

last_update T = last update was TZ
D = last update was DZ
F = last update was FZ
U = last update was UZ
A = last update was AF
S = last update was FS
L = last update was AZ
R = last update was RS
Z = last update was RZ
O = last update was TO
W = last update was TA
Y = last update was FY
C = last update was RY
E = last update was
EDCT

T,D,F,U,A,S,L,R,Z,
O,W,Y,C,E

char

air_cat char
prefix_digit char
prefix_char char
suffix_char char
ghost_to_rte boolean

10.6.3 Alert Data

Alert data comes from the ASP and the TDB are in the form of Global Alert, time bar data,
and bar chart data files. The names of these files are derived from the network messages
that are sent from the ASP and the TDB to the ASD.

10.6.3.1 The Global Alert File

The the alerted elements in the Global Alert file are described in Table 10-3 .

ETMS System design Document
Version 5.8

10-84

 Table 10-3. Global Alert File

Global Alert File
Library Name: map_lib Element Name: map.ins.pas

Purpose: To pass global alerts from the ASP to the ASD.

Data Item Definition Unit/Format Var.Type

color Color of alert (red, green,
or yellow).

R,G, or Y char

e_types element type set of alert_type

name name of element 10 alphanumerics char 10_t

x integer

y integer

source alert_data_type

alarms alarms (one per period) alarm_node_ptr

non_current_alarms alarm_node_ptr

audible_alarm_flag boolean

next_node alert_node_ptr

10.6.3.2 The Time Bar Data File

The time bar data file gives a list of elements, time intervals, and flights. Each element
record is followed by a fixed number of time interval records. The format of the time bar
data file record is shown in Table 10-4.

ETMS System Design Document
Version 5.8

10-85

Table 10-4. Time Bar Data File Record

time_bar_record
Library Name: map_lib Element Name: map.ins.pas

Purpose: To list elements, time intervals, and flights.

Data Item Definition Unit/Format Var.Type

time_bar_window gpr_$window_t

time_bar_interval_count # of 15 minute intervals integer

asp_time_bar_interval_count # of 15 minute intervals integer

time_bar_interval_length integer

time_bar_interval_space integer

time_bar_limits time_span

10.6.3.3 The Bar Chart Data File

The bar chart data file contains detailed list of arrivals, departures, and capacities for each
nas_event_t case. In the case of the airports, the record will have the data for
arrival/departure capacities, number of active arrivals/departures, and total arrivals/departures.
In the case of the fix crossings, the record will have the data for the capacities of various
fixes (i.e. low, high, and superhigh fixes), number of active flights, and total number of
flights crossing the designated fix. In case of the sector crossings, the record will have data
for sector's capacities, active peaks and total peaks.

Table 10-5 describes the format of the bar chart data file record. Notice that the record has a
variant field of nas_event_t type.

ETMS System design Document
Version 5.8

10-86

Table 10-5 Bar Chart Data Record

bar_chart_record
Library Name: map_lib Element Name: map.ins.pas

Purpose: To list elements, time intervals, and flights

Data Item Definition Unit/Format Var.Type

interval_start_time cal_#timedate_rec_t

element_type airports, superhi_fixes,
hi_fixes, lo_fixes,
oceanic, unk, adr

alert_type

elemet_name char10_t

For airport_departure, airport_arrival:
arrival_capacities array of integer

departure_capacities array of integer

active_arrivals array of integer

active_departure array of integer

total_arrivals array of integer

total_departures array of integer

For low_fix_crossing, high_fix_crossing, superhigh_fix_crossing:
low_capacities array of integer

high_capacities array of integer

active_low array of integer

active_high array of integer

active_superhi array of integer

total_low array of integer

total_high array of integer

total_superhi array of integer

For sector_crossing:
total_low array of integer

total_high array of integer

total_superhi array of integer

ETMS System Design Document
Version 5.8

10-87

10.6.4 Weather Data

Weather files are created by the write weather command and read back in by the read
weather command.

10.6.5 The Airway Database

10.6.5.1 The Airway Database — Database File

See Table 10-6 for details on the Airway Database — Database File.

Table 10-6. Airway Database File Record

data_record
Library Name: map_lib Element Name: map.ins.pas

Purpose: To provide a directory of airways

Data Item Definition Unit/Format Var.Type

x x—coordinate in Albers
projection

integer

y y—coordinate in Albers
projection

integer

lat Latitude real

lon Longitude real

code type of node in airway VOR, beacon, etc. integer

name name of airway word6

ETMS System design Document
Version 5.8

10-88

10.6.5.2 Airway Database — Index File

See Table 10-7 for details on the Airway Database Index File Record.

Table 10-7. Airway Database Index File Record

index_record
Library Name: map_lib Element Name: map.ins.pas

Purpose: To provide a directory of airways

Data Item Definition Unit/Format Var.Type

route name of route 5 chars

color display color integer

record_number record number of start of
data in Data Base File

VOR, beacon, etc. integer

10.6.6 Colors Data

The color file is an ASCII file consisting of several columns. The first column gives the
names of the color elements. Words in a color name are separated by a space. For the
adjustable colors (for example, red, green, blue, cyan, magenta, and yellow), the remaining
columns give the color intensity values of the red, green, blue colors. Each of these color
intensities can have an integer value from 0 to 255 inclusive.

For map overlays, prompt background, and window background, the remaining columns
specify the color names in the same format as the colors_default file.

The color file can be created by the save colors command and read by the restore colors
com-mand. In version 5.0 of the ASD, the color file is created in binary format. To provide
backward compatibility, the color file in version 5.0 is automatically converted to ASCII
format when the file is read through the RC command.

The only difference between the colors_default file and the color file is that the former does
not have any adjustable colors. The adjustable colors are the colors that can be changed by
the AC command.

